更新時間:2019-11-26
REXROTH葉片泵PV7-17/10-14RE01MC0-16,力士樂葉片泵,雙作用式葉片泵是由定子、轉子、葉片、配流盤和泵體組成,轉子與定子同心安裝,定子的內曲線是由兩段長半徑圓弧、兩段短半徑圓弧和四段過度曲線所組成,共有八段曲線。
REXROTH葉片泵PV7-17/10-14RE01MC0-16,武漢百士自動化設備有限公司供應產品,現貨庫存,原廠原裝,質量保障,假一罰十,*;歡迎新老客戶咨詢購買!
結構
雙作用式葉片泵是由定子、轉子、葉片、配流盤和泵體組成,轉子與定子同心安裝,定子的內曲線是由兩段長半徑圓弧、兩段短半徑圓弧和四段過度曲線所組成,共有八段曲線。
工作原理
轉子做順時針旋轉,葉片在離心力作用下徑向伸出,其頂部在定子內曲線上滑動。此時,由兩葉片、轉子外圓、定子內曲線及兩側配有盤所組成的密閉的工作腔的容積在不斷地變化,在經過右下角以及左上角的配油窗口處時,葉片伸出,工作腔容積增加,形成真空,油液通過吸油窗吸入;在經過右_上角及左下角的配油窗口處時,葉片回縮,工作腔容積變小,壓強增大,液壓缸油液通過液壓窗口輸出。
液壓傳動系統的組成
1、液壓動力原件
將動力裝置的機械能轉換成為液壓能的裝置,其作用是為液壓傳動系統提供壓力油,是液壓傳動系統的動力源。例如液壓泵。
1.1液壓泵
液壓泵是液壓系統的動力元件,其作用是將原動機的機械能轉換成液體的壓力能,指液壓系統中的油泵,它向整個液壓系統提供動力。液壓泵的結構形式一般有齒輪泵、葉片泵和柱塞泵。
1.2齒輪泵
齒輪泵即依靠密封在個殼體中的兩個或兩個以上齒輪,在相互嚙合過程中所產生的工作空間容積變化來輸送液體的泵。齒輪泵的概念是很簡單的,即它的基本形式就是兩個尺寸相同的齒輪在一個緊密配合的殼體內相互嚙合旋轉,這個殼體的內部類似“8”字形,兩個齒輪裝在里面,齒輪的外徑及兩側與殼體緊密配合。來自于擠出機的物料在吸入口進入兩個齒輪中間,并充滿這一空間,隨著齒的旋轉沿殼體運動,后在兩齒嚙合時排出。困油現象齒輪泵要平穩工作,齒輪嚙合的重合度必須大于1, 于是總有兩對齒輪同時嚙合, :并有一部分油液被圍困在兩對輪齒所圍成的封閉容腔之間。這個封閉的容腔開始隨著
齒輪的轉動逐漸減小,以后又逐漸加大。封閉腔容積的減小會使被困油液受擠壓而產生很高的壓力,并且從縫隙中擠出,導致油液發熱,并致使機件受到額外的負載,而封閉腔容積的增大又造成局部真空,使油液中溶解的氣體分離,產生氣穴現象。這些都將產生強烈的振動和噪音,這就是齒輪泵的困意現象。
危害:徑向不平衡力很大時能使軸彎曲,齒頂與殼體接觸,同時加速軸承的磨損,降低軸承的壽命。
消除困油現象方法:通常是在兩側蓋板上開卸荷槽,使封閉腔容積誠小時通過左邊的卸荷槽與壓油腔相通,容積增大時通過右邊的卸荷槽與吸油腔相通。
1.3葉片泵
葉片泵即通過葉輪的旋轉,將動力機的機械能轉換為水能(勢能、動能、壓能)的水力機械。
葉片泵轉子旋轉時,葉片在離心力和壓力油的作用下,尖部緊貼在定子內表面上。這樣兩個葉片與轉子和定子內表面所構成的工作容積,先由小到大吸油后再由大到小排油,葉片旋轉一周時,完成兩次吸油與排油。
1.4柱塞泵
柱塞泵即利用柱塞在泵缸體內往復運動,使柱塞與泵壁間形成容積改變,反復吸入和排;出液體并增高其壓力的泵。
柱塞泵是液壓系統的一個重要裝置。它依靠柱塞在缸體中往復運動,使密封工作容腔的容積發生變化來實現吸油、壓油。柱塞泵具有額定壓力高、結構緊湊、效率高和流量調節方便等優點,被廣泛應用于高壓、大流量和流量需要調節的場合,諸如液壓機、工程機械和船舶中。
REXROTH葉片泵PV7-17/10-14RE01MC0-16
R900580381 PV7-17/10-14RE01MC0-16
R901344755 PV7-17/10-14RE01MC0-16-P90
R900598753 PV7-17/10-14RE01MC3-16
R900520401 PV7-17/10-14RE01MC5-16
R901394361 PV7-17/10-14RE01MC5-16WG
R900933324 PV7-17/10-14RE01MC5-16WH
R901010430 PV7-17/10-14RE01MC6-16
R900509053 PV7-17/10-14RE01MC7-16
R900504653 PV7-17/10-14RE01MD0-16
R900548512 PV7-17/10-14RE01MD0-16-A234
R901404893 PV7-17/10-14RE01MD0-16-Q15
R900520725 PV7-17/10-14RE01MD3-16
R900520787 PV7-17/10-14RE01MD5-16
R900537419 PV7-17/10-14RE01MN0-16
R900772792 PV7-17/10-14RE01MW0-16
R901136642 PV7-17/10-14RE01MW0-16WG
R900741002 PV7-17/10-14RE01MW0-16WH
R900534143 PV7-17/10-20RE01MC0-10
R901292147 PV7-17/10-20RE01MC0-10-A497
R901388556 PV7-17/10-20RE01MC0-10-P30Q25
R900941072 PV7-17/10-20RE01MC0-10-P45
R900538125 PV7-17/10-20RE01MC3-10
R901303349 PV7-17/10-20RE01MC3-10-A497
R900539710 PV7-17/10-20RE01MC5-10
R900738663 PV7-17/10-20RE01MC5-10WG
R900247239 PV7-17/10-20RE01MC5-10WH
R900908540 PV7-17/10-20RE01MC7-10
R900931507 PV7-17/10-20RE01MC7-10WH
R900906584 PV7-17/10-20RE01MD0-10
R900782498 PV7-17/10-20RE01MD0-10-A234
R900700454 PV7-17/10-20RE01MD5-10
R900506809 PV7-17/100-118RE07MC0-16
機械能:
對于剛體來說,機械能是其動能和勢能的總和;對于流體來說,機械能是其壓力能、動能和勢能的總和。
壓力能:
伯努利方程表明,流體中與壓力相關的那部分能量叫作壓力能。顯然,流體的壓力能等于其壓力和體積的乘積。在液壓與氣壓傳動中,壓力能是主要的能量形式,勢能和動能比壓力能小得多。
動力元件是指液壓系統的液壓泵和氣壓系統的氣源裝置。它們由電動機或柴油機驅動,把輸入的機械能轉換成油液或氣體的壓力能輸入到系統中去,為系統的工作提供動力。
一、液壓泵的基本工作原理
單柱塞泵的工作原理。凸輪由電動機帶動旋轉。當凸輪推動柱塞向上運動時,柱塞和缸體形成的密封體積減小,油液從密封體積中擠出,經單向閥排到需要的地方去。當凸輪旋轉至曲線的下降部位時,彈簧迫使柱塞向回下,形成一定真空度,油箱中的油液在大氣壓力的
作用下進入密封容積。凸輪使柱塞不斷地升降,密封容積周期性地減小和增大,泵就不斷吸油和排油。
容積式液壓泵的共同工作原理如下:
(1)容積式泵必定有一一個或若干個周期變化的密封容積。密封容積變小使油液被擠出,密封容積變大時形成一定真空度,油液通過吸油管被吸入。密封容積的變換量以及變化頻率決定泵的流量。
( 2)合適的配流裝置。不同形式泵的配流裝置雖然結構形式不同,但所起作用相同,并且在容積式泵中是*的。容積式泵排油的壓力決定于排油管道中油液所受到的負載。
二、液壓泵的主要性能參數
1、壓力
工作壓力是指泵的輸出壓力,其數值決定于外負載。如果負載是串聯的,泵的工作壓力是這些負載壓力之和;如果負載是并聯的,則泵的工作壓力決定于并聯負載中小的負載壓力。
額定壓力是指根據實驗結果而推薦的可連續使用的高壓力,他反映了泵的能力(一般為泵銘
牌上所標的壓力)。在額定壓力下運行時,泵有足夠的流量輸出,并且能保證較高的效率和壽命。
高壓力比額定壓力稍高,可看作是泵的能力極限。一-般不希望泵長期在高壓力下運行。
2、排量和流量
排量q指在無泄漏情況下,液壓泵轉- ~轉所能排出的油液體積。可見,排量的大小只與液壓泵中密封工作容腔的幾何尺寸和個數有關。排量的常用單位是(ml/r) 。
單柱塞泵:q=πd2H/4
理論流量Q指在無泄漏情況下, 液壓泵單位時間內輸出的油液體積。其值等于泵的排量V和泵軸轉數n的乘積,即:QT=qn=πd2Hn/4
實際流量Q指單位時間內液壓泵實際輸出油液體積。由于工作過程中泵的出 口壓力不等于零,因而存在內部泄漏量0Q (泵的工作壓力越高,泄漏量越大),使得泵的實際流量小于泵的理論流量,即Q=QT-AQ
泵的實際流量和理論流量之比稱為容積效率ηpv=Q/Qn=(Qr~OQ)/Qr =1-0Q/Qr且Q=Qr*Npv
3、功率、機械效率和總效率
輸入功率P;驅動液壓泵的機械功率,由電動機或柴油機給出P; =2πnMr
輸出功率Po液壓泵輸出的液壓功率,
P.=pQr
根據能量守恒,有pQ_=2πM~n將Q.=qn,消去n得M~=pq/2π
實際_上,由于泵內有各種機械和液壓摩擦損失,泵的實際輸入轉矩應大于理論轉矩
泵的摩擦損失由兩部分組成
容積損失主要 是液壓泵內部泄漏造成的流量損失。容積損失的大小用容積效率表征ηpv機械損失指液壓泵內流體粘性和機械摩擦造成的轉矩損失。機械損失的大小用機械效率表征ηpm
ηpm=Mp/Mp .
液壓泵的總效率泵的總效率是泵的輸出功率與輸入功率之比Mp- =ηpm°Mpv